

Work Disability Trajectories under Three Workers' Compensation Programs

Presenter/Principal Investigator: Emile Tompa Co-investigators: Sheilah Hogg-Johnson, Ben Amick Analyst: Qing Liao

IWH Plenary Series April 2, 2013

Funding: Workplace Safety and Insurance Board Research Advisory Committee (WSIB-RAC)

Who We Are

The **Institute for Work & Health** is a not-for-profit research organization based in Toronto, Canada

We conduct and share research to protect and improve the health of working people. Our research is carried out in two broad domains:

- preventing work-related injury and illness through studies of workplace programs and practices, prevention policies and the health of workers at a population level, and
- (2) improving the health and recovery of injured workers through research on treatment, return to work, disability prevention and management, and compensation policies

Our research is valued by policy-makers, workers and workplaces, clinicians, and occupational health, safety and disability management professionals

Overview and Motivation for Study

- Dramatic increase in number of days on benefits per lost-time claim in Ontario over last 15 years
- In particular, increase in the rate of long duration lost-time claims
- In contrast, trend of declining claim rates over much of the 1990s
- Also, increase in proportion of healthcare only claims relative to lost-time
- Some concern that work disability as measured by days on benefits may be driven by program/legislative factors

Ontario Service Safety Alliance 2005 Annual Report

Decreasing Lost-time Claim Rate

Increasing Number of Days Compensated

Previous Research

Hypotheses for Increasing Duration

- Injured worker characteristics changing demographics
- Claims severity increasing severity of claims
- Changing work environment new challenges for RTW
- Policy change recent policy and operational practices (Bill 99)

IWH Long Duration Claims Study (Hogg-Johnson et al.)

• Changes in policy and practices most likely explanation

Study Objectives

- To investigate the labour-market earnings recoveries of workers' compensation claimants with permanent impairments from three different benefits programs in Ontario, Canada
- 2. To determine whether there is evidence of programmatic impact on the success of reintegration into the labour market
- 3. To develop methods for evaluating earnings recovery of injured workers following work injury

What's New/Different About this Study

- Focus on injured workers with permanent impairments
- Use database of almost 3 decades length that allows us to evaluate three different Ontario benefits programs
- Large number of individuals who are not workers' compensation claimants allows us to select strong comparators/controls
- Long follow-up of 10+ years of labour-market earnings for each program allows us to examine long-term labour market outcomes

Three Long-term Disability Programs (1)

Pre-1990 Program (sample frame from calendar year 1986)

- Bill 101: Permanent Disability program
- Single benefit received based on pre-injury earnings and the percentage of permanent total bodily impairment
- Program focused on benefits, with provision of vocational rehabilitation (VR) services
- All permanently impaired individuals received a life-time benefit

net pre-injury earnings x percentage total bodily impairment x 90%

Three Long-term Disability Programs (2)

Post-1990 Program (sample frame from calendar year 1992)

- Bill 162: Future Economic Loss (FEL) and Non-economic Loss (NEL)
- Two benefits potentially received a loss of earnings capacity/FEL and a nominal non-economic loss/NEL
- Program focused on labour-market re-entry (LMR), with highly structured review process

• Individuals assessed as having a loss of earnings capacity received a FEL

(net pre-injury earnings – net post-injury earnings capacity) x 90%

• Two reassessments over six years before lock-in to age 65

Three Long-term Disability Programs (3)

Post-1998 Program (sample frame from calendar year 1998)

- Bill 99: Loss of Earnings Capacity (LOE)
- Two benefits potentially received LOE and a NEL
- LMR less structured
- Increased obligations of injury employer (self-reliance)
- Wage-replacement rate reduced from 90% to 85%
- Individuals assessed as having a loss of earnings capacity received a wage replacement award (net pre-injury earnings – net post-injury earnings capacity) x 85%
- Intermittent monitoring and reassessment for six years
 before lock-in to age 65

Summary Comparison of Three Programs

Key Characteristics	Pre-1990 (Bill 101)	Post-1990 (Bill 162)	Post-1998 (Bill 99)
Core benefit type	Impairment based	Loss-of-earnings capacity based	Loss-of-earnings capacity based
Duration of benefits	lifetime	Until no loss of earnings capacity assessed, or age 65	Until no loss of earnings capacity assessed, or age 65
Replacement rate	90%	90%	85%
Other characteristics	VR	LMR highly structured	LMR less structured Self-reliance

Data Linkage Created for the Analysis

Principal Data Source

- Longitudinal Administrative Databank (LAD)
- 20% simple random sample of all Canadian tax filers
- Once selected, filers are included in every subsequent year
- Follows individuals from 1982 to most recent tax year
- Coverage is approximately 98% of working age adults

Injured Worker Sample Frames

- Identified from the WCB/WSIB administrative data files
- All injured workers with claims from 1986, 1992, and 1998 who sustained a permanent impairment

Linkage Process

Longitudinal Administrative Databank 1982-recent tax year

•20% simple random sample of tax filers
•ideally 1 in 5 of a sample frame included
•18-19% of injured worker

sample frame identified

Linked Sample Characteristics

	1986	1992	1998
whole cohort	2,500	2640	1,335
females	26%	33%	32%
males	74%	67%	68%
age<=24 in injury year	6%	5%	5%
25<=age<=34 in injury year	25%	28%	21%
<mark>35<=age<=49 in injury year</mark>	42%	44%	51%
50<=age<=59 in injury year	26%	24%	23%
0% <impairment<=5%< th=""><th>25%</th><th>25%</th><th>19%</th></impairment<=5%<>	25%	25%	19%
5% <impairment<=10%< th=""><th>30%</th><th>23%</th><th>20%</th></impairment<=10%<>	30%	23%	20%
10% <impairment<=20%< th=""><th>32%</th><th>32%</th><th>35%</th></impairment<=20%<>	32%	32%	35%
20% <impairment<=50%< th=""><th>11%</th><th>18%</th><th>24%</th></impairment<=50%<>	11%	18%	24%
impairment>50%	2%	1%	2%
pre-injury income<\$20K	27%	30%	26%
<mark>\$20K<=pre-injury income<\$40K</mark>	42%	48%	46%
\$40K<=pre-injury income<\$60K	27%	19%	23%
www.iwh.opreginjury income>=\$60K	4%	3%	5%

Matched Each Injured Workers with Similar Controls

Matching Characteristics

earnings in each of 4 years prior to accident year sex age province of residence propensity score

Earnings Recovery Analysis (1)

- Considered injured worker's yearly labour-market earnings postinjury compared to average of match controls (*proportion of earnings recovery*)
- Injured worker earnings trajectory identified as proportion of earnings recovery each year over nine years
- Used statistical modeling techniques to cluster earnings recovery trajectories into groups based on similarity of trajectories

Earnings Recovery Analysis (2)

- Added variables to the statistical model that included program type, baseline characteristics (sex, age bracket, impairment bracket, pre-injury earnings bracket) and unemployment rate
- Used model to predict probability of an injured worker being in a particular trajectory based on program type and baseline characteristics
- Primary focus was on program type (1986, 1992, 1998)
- Secondary focus was on baseline characteristics

Two Key Analysis Questions

Question 1: How does program type (1986, 1992, 1998) affect the probability of being in a particularly trajectory?

Question 2: How do baseline characteristics of an injured worker (sex, age bracket, impairment bracket, pre-injury earnings bracket) affect the probability of being in a particular trajectory?

Proportion of Earnings Recovery (1)

Example

Injured worker earnings in 2006: \$20,000

Average labour-market earnings of matched controls in 2006: \$50,000 Proportion of earnings recovery in 2006: 40%

Proportion of Earnings Recovery (2)

Comparisons of injured worker labour-market earnings over 10 years postaccident with pre-injury earnings versus average control earnings

	1998 Cohort							
Strata	Based on Pre-injury Earnings	95% Confidence Interval		Based on Controls	95% Confidence Interval			
whole cohort	79%	84%	73%	69%	72%	66%		
female	77%	83%	70%	71%	77%	65%		
male	79%	86%	71%	68%	71%	65%		
age<=24 in injury year	168%	195%	137%	91%	103%	78%		
25<=age<=34 in injury year	87%	96%	77%	67%	72%	61%		
35<=age<=49 in injury year	70%	74%	66%	64%	67%	61%		
50<=age<=59 in injury year	69%	82%	47%	76%	84%	67%		

Results

- Identified 5 distinct trajectories
- For some sub-strata:
 - Program type was significant
 - Baseline characteristics were significant

Following slides focus on probability of being in each of the five trajectories for the sub-strata defined by:

10-20% impairment bracket \$20K-\$40K pre-injury earnings bracket

males and females by each age bracket considered separately

www.iwh.on.ca

Summary of Findings

- Identified 5 distinct trajectories
- For most sub-strata the 1998 cohort had a statistically significant lower probability of the lowest earnings trajectory (1) and higher probability of the second highest one (4) (compared to the 1986 cohort)
- Two trajectories (2 and 3) were statistically similar in probability across the programs for all sub-strata
- The oldest age bracket (age 50 to 59) had a statistically significant higher probability of the highest trajectory

Future Directions

- Need to consider cohorts from several years of the newest program to better understand the impact of Bill 99 (1998 was the first year)
- Multi-year cohorts from each program will provide more precisions
- Future work needs to consider other injured worker characteristics such as occupation, industry, nature of injury, part of body

References

Rosenbaum PR, Rubin DB. 1985. Constructing a Control Group Using Multivariate Matched Sampling Methods that Incorporate the Propensity Score. *The American Statistician*, 39: 33-38.

Jones BL, Nagin DS, Roeder K. 2001. A SAS Procedure Based on Mixture Models for Estimating Developmental Trajectories. *Sociological Methods* & *Research*, 29.3: 374-393.

Jones BL, Nagin DS. 2007. Advances in Group-Based Trajectory Modeling and an SAS Procedure for Estimating Them. *Sociological Methods* & *Research*, 35.4: 542-571.

http://www.andrew.cmu.edu/user/bjones/index.htm

Research Excellence Advancing Employee Health www.iwh.on.ca

Emile Tompa Scientist, etompa@iwh.on.ca 416-927-2027 ext 2113

Identifying Comparators/Controls in the LAD

- Matched injured workers with similar uninjured individuals
- "Nearest Available Mahalanobis Metric Matching within Calipers Defined by the Propensity Score" (Rosenbaum and Rubin, 1985)
- For each injured worker selected up to ten controls based on:
 - propensity score (+/- 25% of 1 standard deviation)
 - labour-market earnings in each of over four years prior to accident (+/- 20%)
 - gender (exact match)
 - Age (+/- 2 years)
- Tested the quality of the matches in several ways

Earnings Recovery Analysis (2)

- SAS procedure for estimating grouping group-based trajectory models (Proc Traj)
- Specialized application of latent class finite mixture modeling that identify clusters of individuals following similar progressions over time of some outcome
- In this case outcome is earnings recovery

