

Movement Analysis of Firefighters using Gaming and Simulation Technology

Tara Kajaks

S. Leonard Syme Training Fellowship in Work and Health

Dr. Joy MacDermid

CIHR Chair - Gender in Measurement and Rehabilitation of Musculoskeletal Work Disability

Overview

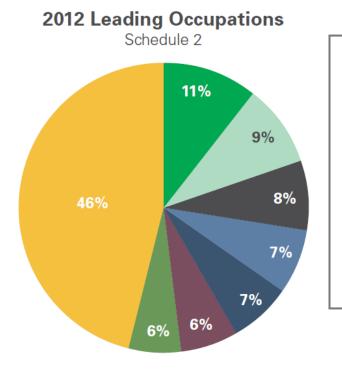
- Background on Firefighter Health and Safety
- FIRE-WELL Research Program
- Microsoft Kinect as a Research Tool
- Current Firefighter Research
 - Movement Analysis Results
 - Simulation Results
- Future Directions

Firefighters in Ontario

- Ontario¹:
 - 487 fire departments
 - 10 400 full-time firefighters
 - 18 600 volunteer firefighters
 - 200 part-time firefighters

- WSIB Schedule 2 Coverage:
 - Employers are individually liable for benefit costs
 - Incentive for each association to implement health and safety training
- 1. Ontario Association of Fire Chiefs, 2009

The Firefighter Demographic is Changing


- Growing female representation (approx. 3%^{1,2})
- Older workforce³
 - Bill 181 Mandatory retirement age 60

	2007	2008	2009	2010
-3888 Average Age	45.46	45.9	46	46.28
-3888 Average Years of Service	17.13	17.41	17.46	17.61
Average Age when starting	28.16	31.69	30.69	30.59
Average age when retiring	55.75	56.06	56.31	56.81
Average years of service when retiring	30.01	30.42	30.54	31.57
Operations .				
Captain Average Age	52.61	52.91	53.34	53.85
Captain Average Years of Service	27.66	27.98	28.27	28.58
DC Average Age	58.94	58.15	57.41	57.55
DC Average Years of Service	34.16	33.78	33.66	33.79

- 1. Service Canada, http://www.servicecanada.gc.ca/eng/qc/job_futures/statistics/6262.shtml
- 2. Hulett et al., 2008
- 3. Toronto Firefighter Association, Fire Watch, July 2011.

WSIB Statistics (2012)

Police officers and firefighters

Secondary and elementary school teachers & counsellors

Cleaners

Childcare and home support workers

Mail and message distribution occupations

Other technical occupations in health care (except dental)

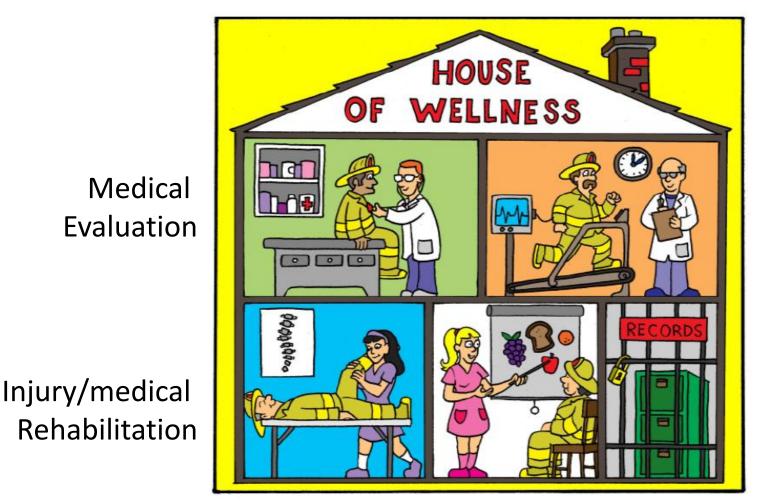
Motor vehicle and transit drivers

Other

2012 Leading Occupation Characteristics

Schedule 2 Leading Leading		Leading Leading		Leading	Leading Nature	
Age Group Gender		Event Source		Part of Body	of Injury	
Police Officers and Firefighters	35-39	Male	Bodily reaction	Persons (bodily motion or condition)	Leg(s)	Sprains and strains

*Leading characteristics are independent from one another


http://www.wsibstatistics.ca/WSIB-StatisticalReport_S2.pdf

Health and Safety Initiatives

- Need to:
 - Accommodate changing demographics
 - Regularly monitor physical health, fitness levels, and mental health
 - Develop MSK injury prevention training programs and tools

Dr. Steve Miller's House of Wellness (Ottawa Firefighter's Association)

Fitness Evaluation

Behavioural Health

Data Collection

http://www.fitasafirefighter.ca/PDF/wellness.pdf, June 2009.

FIRE-WELL Program

- Firefighter Injury Reduction Enterprise: Wellness Enabled Life & Livelihood (2011)
 - Participatory initiative to develop an injury management program with the Hamilton Firefighter's Association
- Outcomes:
 - Physical Demands Analysis for Firefighting
 - Annual medical screening test for injury risk identification
 - Critical Incident Survey
 - MSK Screening Form
 - Functional Task Screen

FIRE-WELL Program

- Task Performance Assessment:
 - N = 109 (5 females)
 - Two tasks: hose drag (6.1 kg), stair climb with high-rise pack (19.5 kg) (Candidate Physical Ability Test)
 - Outcomes measures:
 - Performance: task time, grip strength
 - Cardiovascular: heart rate, blood pressure

FIRE-WELL Program

- Findings and Conclusions:
 - Height, weight, and sex influence task performance¹
 - Males performed better on: 1) stair-climb task, 2) strength measures
 - Females performed better on: 1) hose drag task, 2) cardiovascular measures
 - Future studies need to investigate movement differences between firefighters.
 - Ergonomic training and feedback is needed to reduce injury risks
 - TEAM-Feedback (Technology-Enabled Audit/Analysis of Movement with Feedback)

1. Sinden et al., ACE conference proceedings 2013

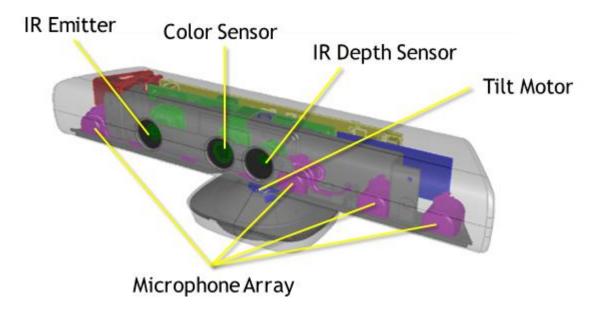
Current Research

- Purpose:
 - To conduct movement assessment of firefighters as they perform three common firefighting tasks
- Partnership:
 - Hamilton Firefighter's Association involved in every step of the study design
 - Rob D'Amico (Captain), Colin Grieve (Firefighter, Union Representative), and Karen Roche (Assistant Deputy Chief)
 - School of Rehabilitation Sciences, McMaster University
 - Dr. Joy MacDermid, Kathryn Sinden, Margaret Lomoton

Methods

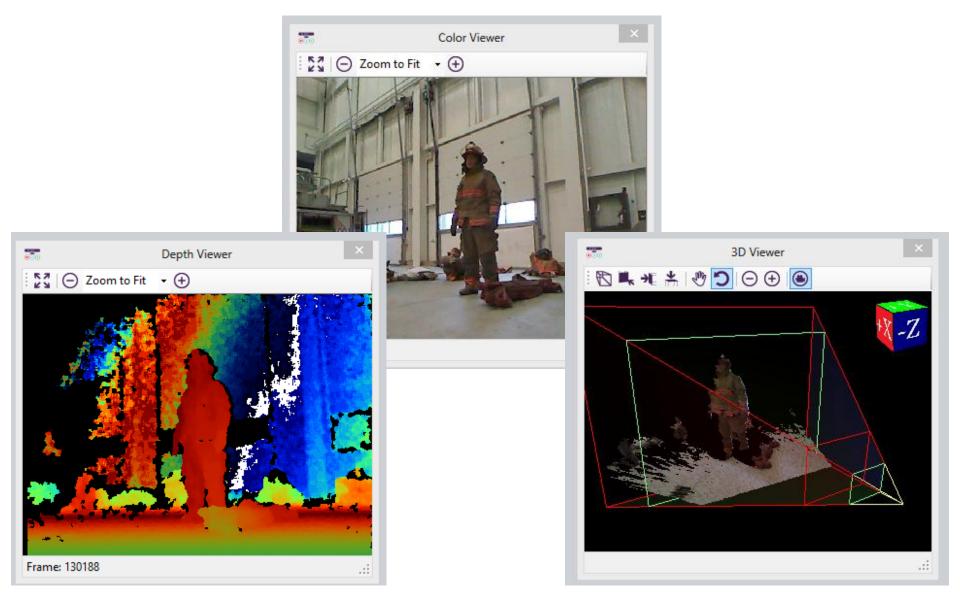
- Tasks: (Candidate Physical Ability Test)
 - 1) Hose Drag (6.1 kg)
 - 2) Hose Pull (6.1 kg)
 - 3) High-rise pack lift and carry (19.5 kg)
- Participants:
 - 48 firefighters (6 female) in full bunker gear plus SCBA (22.7 kg)
- Measurement Tools:
 - Microsoft Kinect System

What is the Kinect system?



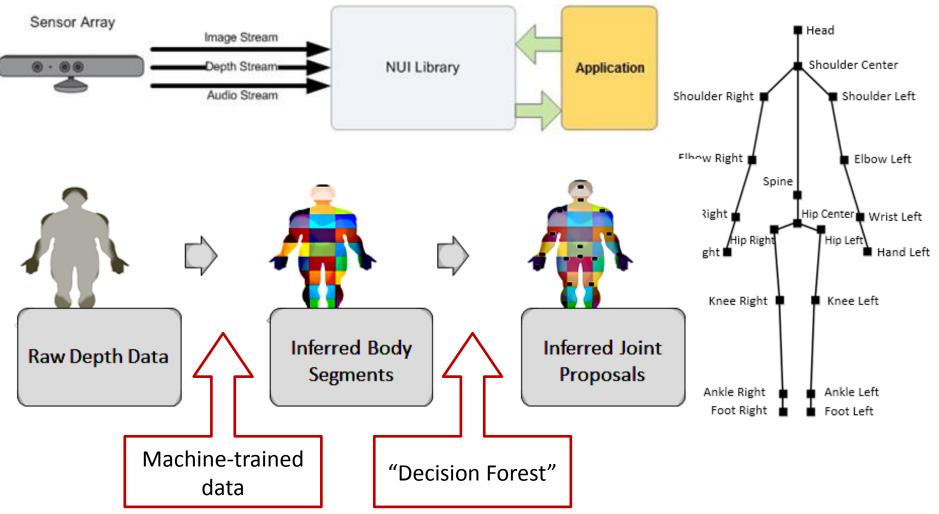
How does the Kinect system work?

aster


University

How does the Kinect system work?

McMaster

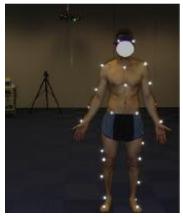

University

How does the Kinect system work?

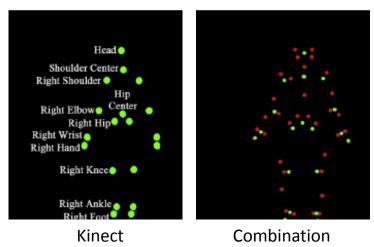
McMaster

University

Kinect for Windows SDK Programming Guide


Kinect vs. Vicon Validation

Clark et al. (2012)

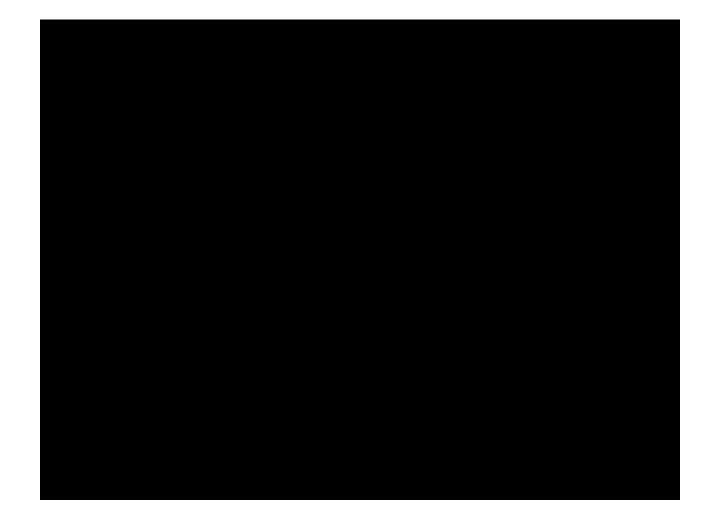

- Three balance tests (forward reach, lateral reach, and single-leg eyes-closed standing balance test)
- Compared select joint angles and landmarks
- Concurrent validity: Pearson's correlations r=0.96 ± 0.04; range 0.84-0.99

Dutta (2011)

- 104 target (0.1m cubes) locations within a distance of 1-3 m.
- Root mean-squared errors were:
- x-axis: 0.0065 m (0.0048 m),
- y-axis: 0.0109 m (0.0059 m),
- z-axis: 0.0057 m (0.0042 m)

Vicon

Pros and Cons of the Kinect System


Master

MC

University

Pros	Cons
Field-friendly	Less accurate than some systems
Easy to set-up	Challenges with 360° view
Markerless	Skeleton lag
No calibration required	Max sampling rate of 30 Hz (inconsistent)
Instantaneous data output	Occlusion issues
Free development toolkit	
Integration of multiple kinect systems	
Cost	

McMaster University Work Wovement Patterns of Firefighters

Kinect and Jack

Jack, Siemens PLM Solutions

http://www.youtube.com/watch?v=_JIkoWV4yFo

Purpose:

- Phase I:
 - To record the breadth of postures used to complete three common firefighter tasks
- Phase II:
 - To evaluate a subset of male and female firefighters as they perform the high-rise pack lift task using gaming and simulation technology

Methods:

- Recruitment to Hamilton Training Facility:
 - Internal recruitment through Rob D'Amico
 - Volunteer fit-for-duty firefighters (inclusion criteria)
 - On-duty firefighters (shift coverage was arranged)
- Data Collection Location:
 - Hamilton Firefighter Training Facility

- Groups of 7-12 firefighters/testing day
- Ethics and study protocol review
- Anthropometric/Demographic Data:
 - height and weight
 - age, sex, and tenure
 - Additional (Kathryn Sinden):
 - Work Limitations Questionnaire -WLQ 25,
 - Organizational Policies and Practices Questionnaire OPP 11,
 - Patient Specific Functional Scale PSFS

Protocol:

 Firefighters wore bunker gear, including helmet and self-contained breathing apparatus (22.7 kg)

- Tasks: (Candidate Physical Ability Test)
 - 1) Hose Drag (6.1kg)
 - 2) Hose Pull (6.1kg)
 - 3) High-rise pack lift and carry (19.5kg)

- Standardized Hose Position
 - Starting box: 0.4 m x 0.3 m 🔨
 - Nozzle/pack position was 0.3 m to the right and 0.2 m in front of the box center (for right handed participants)

- Standardized Hose Position
 - Starting box: 0.4 m x 0.3 m
 - Nozzle/pack position was 0.3 m to the right and 0.2 m in front of the box center (for right handed participants)

- Standardized Camera Position
 - Task 1 and 2: Kinect was 3.65 m in front of starting position
 - Task 3: Kinect was 3.35 m from start position at a 15 ° offset
 - Kinect Height: 0.5 m

Phase I

Video Observation Analysis

	Description	Task 1	Task 2	Task 3
	Initial body posture	~	✓	\checkmark
	(kneeling, squatting, stooping, other)			
	# Hands used at pick-up	\checkmark	\checkmark	\checkmark
	(one hand, two hands)	•	•	•
	Hose position during hose drag			
0	(over the shoulder, pistol grip, other)	•		
Posture	# Hands used during hose drag			
SOC	(one hand, two hands)	•		
	Body posture during hose pull			
	(kneeling, squatting, stooping, standing)		v	
	Assymetry of high rise pack lift			
	(none, slight, significant)			v
	High-rise pack movement to shoulder			
	(slide, flip, swing across body)			v
ns)	Initial hand on hose	\checkmark	\checkmark	\checkmark
Time (ms)	Gait initiation	\checkmark		\checkmark
Tin	Hand on hose after three hose pulls		\checkmark	

Phase I

Video Observation Analysis

	Description	Task 1	Task 2	Task 3
	Initial body posture (kneeling, squatting, stooping, other)	\checkmark	✓	~
Ľ	# Hands used at pick-up (one hand, two hands)	\checkmark	✓	~
	Hose position during hose drag (over the shoulder, pistol grip, other)	✓		
Posture	# Hands used during hose drag (one hand, two hands)	✓		
ă	Body posture during hose pull (kneeling, squatting, stooping, standing)		✓	
	Assymetry of high rise pack lift (none, slight, significant)			~
	High-rise pack movement to shoulder (slide, flip, swing across body)			~
(su	Initial hand on hose	\checkmark	\checkmark	\checkmark
Time (ms)	Gait initiation	\checkmark		\checkmark
Tin	Hand on hose after three hose pulls		\checkmark	

Data Analysis:

- Descriptive statistics
 - Anthropometrics, demographics, posture
- Chi-squared analysis for associations between:
 - body posture and
 - Categories for: age, sex, height, weight, BMI, tenure, and job type
- Multivariate stepwise regression to predict BMI using video observation outcome measures
 - (e.g. body posture, number of hands, asymmetry, task time).

Results:

– Anthropometric and demographic data:

		Ag (yea			ight g)	Hei (cı	•	Ten (yea	
	Ν	Mean	STD	Mean	STD	Mean	STD	Mean	STD
Male	42	44.0	8.8	96.5	11.1	179.8	8.9	15.9	8.7
Female	6	36.0	5.4	70.0	12.6	167.7	4.3	7.0	3.6
Average	48	43.0	8.8	93.2	14.2	178.3	9.4	14.8	8.7

Results:

Descriptive statistics for body posture:

		Posture					
Task Number	Task Description	Kneeling	Squatting	Stooping	Other/ Standing		
1	Hose Pick-Up	10	9	29	0		
2	Hose Pick - Up	27	3	18	0		
2	Hose Pull	23	0	12	13		
3	High Rise Pack Lift	30	5	11	2		

Phase I

Video Observation Analysis

Results:

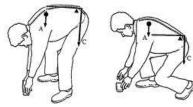
- Chi-squared analysis:
 - Task 3: initial body posture vs. age (p = 0.034)
 - All other Chi-squared analyses showed no associations in posture based on age, sex, tenure, height, weight, or BMI.
- Multivariate regression to predict BMI:
 - Task 1: Hose drag posture when walking (p = 0.038), R = 0.300
 - Task 3: Task time

(p =0.037), R = 0.302

Chi-squared analysis:

• Increased use of kneeling and stoop postures

			Т	Task 3 Initial Body Posture				
			Kneeling	Squat	Stoop	Other	Total	
	20-29	Count	2	2	1	2	7	
	20-29	% within Age Category	28.6%	28.6%	14.3%	28.6%	100.0%	
Categories	30-39	Count	5	1	2	0	8	
	50-59	% within Age Category	62.5%	12.5%	25.0%	0.0%	100.0%	
e Cat	40-49	Count	16	2	4	0	22	
Age	40-49	% within Age Category	72.7%	9.1%	18.2%	0.0%	100.0%	
	50-59	Count	7	0	4	0	11	
	50-59	% within Age Category	63.6%	0.0%	36.4%	0.0%	100.0%	
	Total	Count	30	5	11	2	48	
	Total	% of Total	62.5%	10.4%	22.9%	4.2%	100.0%	



Phase I

Video Observation Analysis

Discussion:

- Aside from the association between Task 3 Initial Body Posture and Age, preliminary analysis did not show strong associations between body posture and firefighter characteristics
 - Future analyses should consider multinomial logistic regression and/or cluster analysis
- Several postures exhibited potentially harmful postures including stoop lifting and asymmetric lifting
 - Ergonomic training for firefighters may be needed to encourage avoidance of dangerous postures

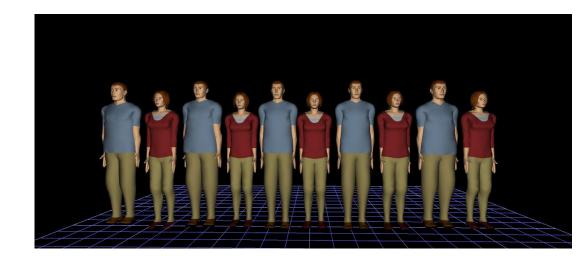
Video Observation Analysis

- Limitations:
 - A small sample of female firefighters was recruited; however, the females were well represented relative to the cohort size.
 - Only one trial for each firefighter was observed and analyzed.
 - Within-firefighter posture variability cannot be observed

Video Observation Analysis

Conclusion:

- No single posture is adopted by all firefighters to perform a given task
 - Age may be an important consideration with respect to preferred working postures.
 - Ergonomic analyses of postures is needed to recommend most appropriate postures.



Ergonomic Simulation Analysis

Purpose:

- To evaluate a subset of male and female firefighters as they perform the high-rise pack lift (Task 3) using gaming and simulation technology
 - » Task 3 was selected due to the magnitude of the load to be lifted (19.5 kg)

Ergonomic Simulation Analysis

Methods:

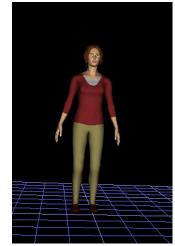
- Purposive sampling based on:
 - Sex (5 male, 5 female)
 - Age
 - Height

- Weight
- Lift Posture

		Age (years)		Height (cm)		Weight (kg)		Tenure (years)		
	Ν	Mean	STD	Mean	STD	Mean	STD	Mean	STD	
Male	5	39.20	12.48	180.34	7.41	100.88	19.45	12.20	10.99	
Female	5	36.60	5.86	167.18	4.62	65.50	6.83	6.20	3.40	
Average	10	37.90	9.29	173.76	9.05	83.19	23.16	9.20	8.29	
Cohort Average	48	42.96	8.84	178.27	9.38	93.20	14.23	14.75	8.73	

	Participant Number	Age	Weight (kg)	Height (cm)	Tenure (years)	Job Title	Initial Body Posture
	1	34	82.92	180.34	7.0	Firefighter	Kneeling
	2	50	134.17	182.88	22.0	Firefighter	Kneeling
a)	3	29	94.26	185.42	3.0	Firefighter	Stoop
Male	4	55	96.98	185.42	26.0	Captain	Stoop
	5	28	96.07	167.64	3.0	Firefighter	Lean
	Mean	39.20	100.88	180.34	12.20		
	STD	12.48	19.45	7.41	10.99		

	1	44	67.49	172.97	5.0	Firefighter	Squat
	2	33	57.97	162.56	3.0	Firefighter	Kneeling
<u>e</u>	3	37	63.41	162.56	12.0	Firefighter	Kneeling
Female	4	40	76.11	170.18	5.5	Firefighter	Stoop
Ъ	5	29	62.50	167.64	5.5	Firefighter	Squat
	Mean	36.60	65.50	167.18	6.20		
	STD	5.86	6.83	4.62	3.40		



Ergonomic Simulation Analysis

Protocol:

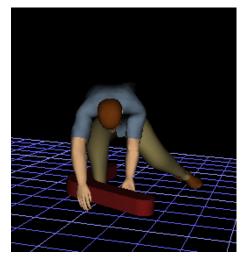
- Jack avatars were scaled based on sex, height, and weight of the firefighters
 - Bunker gear and SCBA were not accounted for in this analysis
- Kinect skeleton data was streamed into Jack Software to drive the avatars

Ergonomic Simulation Analysis

Protocol:

- Simulations were performed for Task 3 Initial Body Postures using:
 - Kinect skeleton data streaming
 - manual manipulation by expert Jack user (6 years experience)^{1,2}

- 1. Potvin et al., 2008
- 2. Kajaks et al. 2011


Protocol:

- Ergonomic Analysis of initial body posture was performed within Jack, with focus on lumbar forces.
- Assumption of equal weight in hands (88.78 N per hand)

D ForceSolver	-Ergonomic A	nalysis					
Human:	Sort by: Jo	- 1	A	ngle conve	ntion: J;	ack 💷	
Forces							
✓ Left hand Site: palm.palmcenter → W 0.0 AN	Joint/Axis	% Capable	Use	Moment (Nm)	Muscle Effect	Angle (deg)	St 1
	R Wrist Flx	0.0	1	0.0	N/A	0.0	0.0
X: 0.0 🗣 Y: -1.0 🗬 Z: 0.0 🖨 🗽	L Wrist Flx	0.0	\checkmark	0.0	N/A	0.0	0.0
	R Wrist Dev	0.0	\checkmark	0.0	N/A	0.0	0.0
📝 Right hand	L Wrist Dev	0.0	\checkmark	0.0	N/A	0.0	0.0
Site: palm.palmcenter 💷 🗽 0.0 🛃	R Wr SuPr	0.0	\checkmark	0.0	N/A	0.0	0.0
	L Wr SuPr	0.0	\checkmark	0.0	N/A	0.0	0.0
X: 0.0 🐳 Y: -1.0 🐳 Z: 0.0 🐳 🧽	R Elbow	0.0	\checkmark	0.0	N/A	0.0	0.0
	L Elbow	0.0	\checkmark	0.0	N/A	0.0	0.0
Clear all figure loads	R Sh AbAd	0.0	\checkmark	0.0	N/A	0.0	0.0
	L Sh AbAd	0.0	\checkmark	0.0	N/A	0.0	0.0
Support	R Sh FwBk	0.0	\checkmark	0.0	N/A	0.0	0.0
	L Sh FwBk	0.0	\checkmark	0.0	N/A	0.0	0.0
Force distribution strategy: two feet 😐	R Sh Hmrl	0.0	\checkmark	0.0	N/A	0.0	0.0
	L Sh Hmrl	0.0	\checkmark	0.0	N/A	0.0	0.0
Supporting Hand: none 😐	Trunk Flx	0.0	\checkmark	0.0	N/A	0.0	0.0
	Trunk Bend	0.0	\checkmark	0.0	N/A	0.0	0.0
External Support: none 🛁	Trunk Twst	0.0	\checkmark	0.0	N/A	0.0	0.0
	R Hip	0.0	\checkmark	0.0	N/A	0.0	0.0
Frequency and Duration	L Hip	0.0	\checkmark	0.0	N/A	0.0	0.0
Use frequency/duration compensation	R Knee	0.0	\checkmark	0.0	N/A	0.0	0.0
Frequency: 1.0 🚔 Cycle time (sec): 60.0 🚔	L Knee	0.0	\checkmark	0.0	N/A	0.0	0.0
	R Ankle	0.0	\checkmark	0.0	N/A	0.0	0.0
Freg/min: 1.0 Duration: t < 0.2 sec 💻	L Ankle	0.0	\checkmark	0.0	N/A	0.0	0.0
		Force (N)					
Limits	L4/L5 Comp	0.0	\checkmark				
Percent capable threshold: 75.0 🚔	L4/L5 AP	0.0	\checkmark				
L4/L5 Compression limit (N): 3400.0 🚍	L4/L5 Lat	0.0	\checkmark				
L4/L5 AP shear limit (N): 1000.0	Solver						
L4/L5Lateral shear limit (N): 1000.0 🚔	Solve	Startin	ig Loa	ad (N): 10.0) 🚔 N	1aximum	Load

ForceSolver	-		-					<u> </u>
Human: human	Ergonomic Ar	nalysis						
Forces	Sort by: Jo	int 💷	A	ngle conve	ntion: J	ack 🔟		Â
✓ Left hand Site: palm.palmcenter → 🔯 88.78 ♣N	Joint/Axis	% Capable	Use	Moment (Nm)	Muscle Effect	Angle (deg)	Strength Mean	Std
	D 111 - 51					-	(Nm)	(Ni
X: 0.0 🕏 Y: -1.0 🕏 Z: 0.0 🕏 🔯	R Wrist Flx	100 100	 ✓ ✓ 	-0.0		-3.1 28.1		
	L Wrist Flx R Wrist Dev	100			FLXN RAD	0.0	8.1 11.0	2.6
Right hand	L Wrist Dev	100		0.0	KAD	15.0		
Site: palm.palmcenter 🤯 88.78 🕀 N	R Wr SuPr	100		-0.4		89.1		
	L Wr SuPr	100		-0.0		113.0		
X: 0.0 🖨 Y: -1.0 🖨 Z: 0.0 🖨 🔯	RElbow	100			EXTN	5.0	24.6	5.0
	L Elbow	100			FLXN	33.1	60.6	14.9
Clear all figure loads	R Sh AbAd	100			ABD	139.5	64.7	15.9
	L Sh AbAd	100			ABD	105.0	73.4	18.1
Support	R Sh FwBk	100			FWD	114.2	92.5	25.2
Free Field Constant and Free Field	L Sh FwBk	100	V		FWD	109.0	91.9	25.1
Force distribution strategy: two feet —	R Sh Hmrl	100	v	-1.2	LAT	37.9	23.7	5.4
Supporting Hand: none -	L Sh Hmrl	100	V	0.9	MED	-82.8	51.2	13.1
Supporting Hand. Hone	Trunk Flx	88	v	-217.0	FLXN	84.0	342.2	107.8
External Support: none 🛁	Trunk Bend	100	v	16.8	LEFT	-0.2	762.2	171.5
	Trunk Twst	100	V	-15.1	CW	1.9	122.9	32.9
Frequency and Duration	R Hip	94	V	-107.9	EXTN	101.4	286.9	115.2
Use frequency/duration compensation	L Hip	99	V	-21.1	EXTN	6.7	205.9	82.7
	R Knee	95	1	65.3	EXTN	95.5	155.8	54.5
Frequency: 1.0 Cycle time (sec): 60.0	L Knee	95	V	-62.9	FLXN	30.2	122.5	36.1
	R Ankle	100	V	-14.5	EXTN	16.9	164.1	54.3
Freq/min: 1.0 Duration: t < 0.2 sec	L Ankle	100	V	2.2	FLXN	21.3	170.7	56.5
Limits		Force (N)						
Percent capable threshold: 75.0 🚔	L4/L5 Comp	4135.2	v					
	L4/L5 AP	1185.0	V					
L4/L5 Compression limit (N): 3400.0 🚔	L4/L5 Lat	10.0	1					
L4/L5 AP shear limit (N): 1000.0 🛫								
L4/L5 Lateral shear limit (N): 1000.0 🚖								-
	Solver							
	Solve	Startin	ng Lo	ad (N): 10.0	L N	/laximum l	Load (N): 3	00.0
				U	sage	Reset	t [Dismiss

Results

	Participant Number	Initial Body Posture	L4/L5 Comp. (N)	Acceptable Comp. Force? (3400 N)	L4/L5 Shear (N)	Acceptable Shear Force? (1000 N)	L4/L5 Lateral Force (N)	Acceptable Lateral Force ? (1000 N)	
	1	Kneeling	3879.3	no	955.7	no	31.8	yes	
	2	Kneeling	5384.5	yes	1390.2	yes	93.5	yes	
a)	3	Stoop	4035.0	no	1197.5	no	29.6	yes	
Male	4	Stoop	3062.7	yes	1013.5	no	-20.7	yes	
_	5	Lean	4135.2	no	1185.0	no	10.0	yes	
	Mean		4099.3		1148.4		28.8		-
	STD		833.7		171.4		41.8		
* * * * *									0.0
	1	Squat	3105.1	yes	941.4	yes	10.8	yes	
	2	Kneeling	2611.1	yes	535.8	yes	4.4	yes	

	±	Squat	5105.1	yC3	541.4	y C3	10.0	yC3
	2	Kneeling	2611.1	yes	535.8	yes	4.4	yes
e	3	Kneeling	2764.1	yes	682.1	yes	41.6	yes
Female	4	Stoop	2689.2	yes	746.8	yes	34.4	yes
Ъ	5	Squat	3263.6	yes	870.6	yes	22.3	yes
	Mean		2886.6		755.3		22.7	
	STD		282.7		159.3		15.6	

Discussion:

- Men exhibited greater shear and compression forces than women in this subset sample
- Compared to NIOSH action limits, in this sample:
 - 3/5 men did not perform the task safely according to compression limits
 - 4/5 men did not perform the task safely according to shear limits

Ergonomic Simulation Analysis

Discussion:

- Women appear to adopt safer lifting postures than men when lifting high-rise packs
 - However, more postures, using a larger sample size, need to be assessed to determine if there is a trend in performance safety
 - Literature shows that female firefighters are at a greater risk of injury¹

Ergonomic Simulation Analysis

Limitations:

- Simulations did not include bunker gear and SCBA (net weight of 22.7 kg)
 - Work is in progress to identify optimal positioning of loads to properly simulate gear
- Quality of the Kinect data was compromised due to the position of the high-rise pack in front of the firefighter
 - Manual manipulation of avatar was required to complete posturing

Future Research with the Kinect

- Firefighters:
 - Kinect validation with bulky clothing
 - Simulation of bunker gear and SCBA
- Firefighters and other contexts:
 - Ergonomic training modules
 - Rehabilitation tools
 - Applied research with multiple Kinects (e.g. older driver research)

Kinect 2.0

The **MOVE** group... Movement Analysis: Occupationally Valid Evaluation

- A research group with the interest and expertise to advance the area of field-based motion analysis.
- Group Members:

Kathryn Sinden

Dr. Joy MacDermid Dr. Brenda Vrkljan

Tara Kajaks

Thank You

Acknowledgements

Dr. Joy MacDermid Kathryn Sinden Margaret Lomotan

Dr. Brenda Vrkljan Dr. Vicki Galea

Hamilton Firefighter's Association Robert D'Amico Colin Grieve Karen Roche

