Anticipated and Unanticipated Incentives of Disability Insurance Experience Rating: The Case of The Netherlands

Pierre Koning (VU University, IZA, Ministry of Social Affairs and Employment)

Financial Incentives Symposium November 29-30, Institute of Work and Health (IWH), Toronto
Introduction

• Netherlands stands out as a country with high disability insurance (DI) experience rating (ER) incentives.
 • In 2010, 40% of all DI benefit costs was experience rated for fixed contracts
 • Employer pays wage continuation during first and second year of sickness
 • ER incentives for time window of ten years of DI cohorts

• During the current crisis, criticism on system is rising
 • Firms in financial problems
 • Pressure towards non-experience rated temporary / flexible / independent jobs
Introduction

• Current study: focus on first years of the ER scheme in the NL – so how the transition took place
 – In 1998: start of the ER scheme!
 – Registered data of (inflow in) social benefit administration are used: 2000-2002
 – At that time: five year time window of all DI risks

• Research question: What was the impact of ER on the inflow in the DI scheme? Two distinct hypotheses:
 – Anticipated: employers were aware of ER system
 – Unanticipated: employers became aware if they were confronted with premium raises
Introduction: the Dutch context

• International evidence on effects of ER mixed
• For NL: strong evidence that various incentives caused moral hazard. DI was substitute pathway into unemployment. Counter-incentives may offset this.
• Causes of moral hazard:
 – DI is mandatory, pay-as-you go contribution rates
 – Insurance against all income losses that result from occupational and non-occupational injuries
 – System based on earnings capacity – so partial DI schemes
Large drop in inflow into DI..
The experience rating system

• Registration delay of two years; time window of five years (in principle)
• First, calculation of disability risk d_t, based on DI benefit costs $S_{t,s}$ at time t for cohort s, and total wages W_t.
• For each year, there are five cohorts of S, and (the average of) five respective wage sums:

$$d_t = \frac{\sum_{s=0}^{T} S_{t-2, t-2-s}}{\sum_{s=0}^{T} W_{t-2-s}/(T+1)}$$

(1)
The experience rating system, ctd

- Next, calculation of premium rate:

\[p_t = \min (p_{min} + d_t, p_{max}) \]

(2)

- Maximum premium mitigates large premiums
- Minimum premium needed to finance over-users
- Minimum and maximum premiums differ between wage sum of all employers
 - Criterion is equal to 15 x average wage sum in Netherlands
 - Maximum is lower for smaller employers (and minimum is higher)
<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td># Employers</td>
<td>309174</td>
<td>315314</td>
<td>312656</td>
</tr>
<tr>
<td>Number of employees</td>
<td>6524458</td>
<td>6972086</td>
<td>6922609</td>
</tr>
<tr>
<td>Average employer size</td>
<td>21.1</td>
<td>22.1</td>
<td>22.1</td>
</tr>
</tbody>
</table>

Sectors (%)

- Primary sector: 6.2%, 5.9%, 5.9%
- Industrial sector: 21.3%, 21.3%, 21.4%
- Trade sector: 28.1%, 27.6%, 26.8%
- Service industries: 3.3%, 3.4%, 3.5%
- Transport: 3.3%, 3.3%, 3.3%
- Catering: 8.2%, 8.3%, 8.3%
- Social services / cultural: 12.7%, 12.5%, 12.5%
- (Semi-)public: 1.6%, 1.6%, 1.5%
- Financial sector: 13.9%, 14.7%, 15.3%
- Temp. empl. agencies: 0.8%, 0.7%, 0.7%
- Unknown: 0.7%, 0.8%, 0.8%

Age and gender (%)

- 15-25: 23.6%, 23.3%, 23.2%
- 26-35: 32.3%, 31.5%, 30.3%
- 36-45: 22.0%, 22.5%, 23.1%
- 46-55: 16.6%, 16.7%, 17.1%
- 56-65: 5.6%, 6.0%, 6.5%
- Male: 56.1%, 56.3%, 56.1%
- Female: 43.9%, 43.7%, 43.9%
Data: majority of firms paid the minimum premium

<table>
<thead>
<tr>
<th>Experience rating variables</th>
<th>Full sample</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average wage sum</td>
<td>34983</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Disability risk (%)</td>
<td>1.18</td>
<td>1.37</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>DI premium (%)</td>
<td>1.39</td>
<td>1.51</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>$p_{min} - p_{max}$, small empl.</td>
<td>1.24 – 4.17</td>
<td>0.98 – 4.77</td>
<td>1.24 – 6.06</td>
<td></td>
</tr>
<tr>
<td>$p_{min} - p_{max}$, large empl.</td>
<td>0.67 – 5.56</td>
<td>0.41 – 6.36</td>
<td>0.45 – 8.08</td>
<td></td>
</tr>
<tr>
<td>% p_{min}</td>
<td>86.2</td>
<td>84.5</td>
<td>83.2</td>
<td></td>
</tr>
<tr>
<td>% p_{max}</td>
<td>5.1</td>
<td>4.9</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>% between p_{min} and p_{max}</td>
<td>8.7</td>
<td>10.7</td>
<td>12.2</td>
<td></td>
</tr>
</tbody>
</table>

Disabled workers as % of employer size

Total	1.52	2.31	2.63
Total	- Male	- Female	
- Male	1.03	1.28	1.40
- Female	0.48	1.04	1.24

Inflow into DI (%)

Total	0.99	1.01	0.94
- Male	0.49	0.51	0.48
- Female	0.50	0.50	0.46
- Fully disabled	0.30	0.36	0.34
- Partially disabled	0.69	0.65	0.60
Expected effects: anticipated

• **Anticipated**: employers aware of marginal incentive due to experience rating, so less incentives if $p = p_{max}$

• Direct comparison of employers with and without marginal incentive would however yield biased results (i.e. underestimation of effect)

• Therefore: **Difference-in-difference** design that exploits differences between small and larger firms

• **Required**: local linearity assumption – i.e. no substantial changes in DI risks

• Only estimate model for firms with > 10 workers
Estimation of anticipated effects

For some part of the distribution of disability risks, the marginal ER incentive is zero for small employers (paying their maximum premium) and one for medium/large employers (not paying maximum):

\[p_{\text{max}} - p_{\text{min}} < d_{jt} < p_{\text{max}} - p_{\text{min}} \]
Relevant range..
Model

Use cross sectional inflow data (2000-2002) to estimate a log odds model for DI inflow f

$$\ln \{f_{it} / (1 - f_{it})\} = X_{it} \beta + \Phi(d_{it}) + \eta I(p_{max} - p_{min} < d_{it} < p_{max} - p_{min}) + \varepsilon_{it}$$

$i =$ firm, $t =$ time, $X =$ controls, Φ is spline of disability risk d, I denotes event in parentheses, ε is residual
Estimation results

• Significant and (expected) negative effect only in 2002: $-0.20 \ (0.031)$
• Effects 0.096 and -0.081 in 2000 resp. 2001
• Interpretation: Awareness of ER has increased over time? Unanticipated effects?
• Other results: see PPHS paper.
Unanticipated effects: research design

- Idea: employers improve preventative activities if they are confronted with (unanticipated) premium increases
- Allows for a difference in difference design:
 - Compare changes in the DI inflow rate of firms experiencing it first premium raise..
 - ...to changes of those who haven’t (yet)
- Due to two year registration lag, no risk of regression to the mean effects (Koning 2009)
Unanticipated Effects: outcomes

• Similar log odds model, but now with controls for ex ante differentials in treatment and control groups (as dummies)
• Treatment group: firms that have an increase in DI premium rate in 2001; controls have not.
• Dif-in-dif estimate for effect in 2002
• Effect estimate of 0.16 (0.021)
 – Similar for partial and full disability
• See Koning (2009) for details
Conclusions

• Effect of DI experience rating seems to have worked like a “wake-up call”
 – No evidence of ER incentive effects in 2000 and 2001
 – Strong evidence of effects from a learning perspective.
 – Relevant cognitive biases: availability bias, optimism bias and accumulation bias

• Care should be taken of ER design, particularly registration delays

• In Dutch context, also other (new) risks:
 – More inflow in unemployment insurance
 – Employers more eager to use temporary contracts, without ER (adverse selection)