

Ministerie van Sociale Zaken en Werkgelegenheid

Anticipated and Unanticipated Incentives of Disability Insurance Experience Rating: The Case of The Netherlands

Pierre Koning (VU University, IZA, Ministry of Social Affairs and Employment)

Financial Incentives Symposium November 29-30, Institute of Work and Health (IWH), Toronto

Introduction

- Netherlands stands out as a country with high disability insurance (DI) experience rating (ER) incentives.
 - In 2010, 40% of all DI benefit costs was experience rated for fixed contracts
 - Employer pays wage continuation during first and second year of sickness
 - ER incentives for time window of ten years of DI cohorts
- During the current crisis, criticism on system is rising
 - Firms in financial problems
 - Pressure towards non-experience rated temporary / flexible / independent jobs

Introduction

- Current study: focus on first years of the ER scheme in the NL – so how the transition took place
 - In 1998: start of the ER scheme!
 - Registered data of (inflow in) social benefit administration are used: 2000-2002
 - At that time: <u>five year time window of all DI risks</u>
- <u>Research question</u>: What was the impact of ER on the inflow in the DI scheme? Two distinct hypotheses:
 - Anticipated: employers were aware of ER system
 - Unanticipated: employers became aware if they were confronted with premium raises

Introduction: the Dutch context

- International evidence on effects of ER mixed
- For NL: strong evidence that various incentives caused moral hazard. DI was substitute pathway into unemployment. Counter-incentives may offset this.
- Causes of moral hazard:
 - DI is mandatory, pay-as-you go contribution rates
 - Insurance against all income losses that result from occupational and non-occupational injuries
 - System based on earnings capacity so partial DI schemes

Large drop in inflow into DI..

The experience rating system

- Registration delay of two years; time window of five years (in principle)
- First, calculation of disability risk d_t, based on DI benefit costs S_{t,s} at time t for cohort s, and total wages W_t.
- For each year, there a five cohorts of *S*, and (the average of) five respective wage sums:

$$d_t = \frac{\sum_{s=0^T} S_{t-2, t-2-s}}{\sum_{s=0^T} W_{t-2-s} / (T+1)}$$
(1)

The experience rating system, ctd

• Next, calculation of premium rate:

 $p_t = \min(p_{min} + d_t, p_{max}) \tag{2}$

- Maximum premium mitigates large premiums
- Minimum premium needed to finance over-users
- Minimum and maximum premiums differ between wage sum of all employers
 - Criterion is equal to **15** x average wage sum in Netherlands
 - Maximum is lower for smaller employers (and minimum is higher)

	Full sam	Full sample			
	2000	2001	2002		
# Employers	309174	315314	312656		
Number of employees	6524458	6972086	6922609		
Average employer size	21.1	22.1	22.1		
Sectors (%)					
Primary sector	6.2	5.9	5.9		
Industrial sector	21.3	21.3	21.4		
Trade sector	28.1	27.6	26.8		
Service industries	3.3	3.4	3.5		
Transport	3.3	3.3	3.3		
Catering	8.2	8.3	8.3		
Social services / cultural	12.7	12.5	12.5		
(Semi-)public	1.6	1.6	1.5		
Financial sector	13.9	14.7	15.3		
Temp. empl. agencies	0.8	0.7	0.7		
Unknown	0.7	0.8	0.8		
Age and gender (%)					
15-25	23.6	23.3	23.2		
26-35	32.3	31.5	30.3		
36-45	22.0	22.5	23.1		
46-55	16.6	16.7	17.1		
56-65	5.6	6.0	6.5		
Male	56.1	56.3	56.1		
Female	43.9	43.7	43.9		

Data: majority of firms paid the minimum premium

	Full sa	Full sample				
	2000	2001	2002			
Experience rating variab	les					
Average wage sum	34983	-	-			
Disability risk (%)	1.18	1.37	1.35			
DI premium (%)	1.39	1.51	1.56			
$p_{min} - p_{max_i}$ small empl.	1.24 – 4.17	0.98 – 4.77	1.24 – 6.06			
p _{min} – p _{max,} large empl.	0.67 - 5.56	0.41 - 6.36	0.45 - 8.08			
% p _{min}	86.2	84.5	83.2			
% p _{max}	5.1	4.9	4.5			
% between p_{min} and p_{max}	8.7	10.7	12.2			
Disabled workers as % of employer size						
Total	1.52	2.31	2.63			
- Male	1.03	1.28	1.40			
- Female	0.48	1.04	1.24			
Inflow into DI (%)						
Total	0.99	1.01	0.94			
- Male	0.49	0.51	0.48			
- Female	0.50	0.50	0.46			
- Fully disabled	0.30	0.36	0.34			
- Partially disabled	0.69	0.65	0.60			

Expected effects: anticipated

- Anticipated: employers aware of marginal incentive due to experience rating, <u>so less incentives if p = p_{max}</u>
- Direct comparison of employers with and without marginal incentive would however yield biased results (i.e. underestimation of effect)
- Therefore: <u>Difference-in-difference</u> design that exploits differences between small and larger firms
- <u>Required</u>: local linearity assumption i.e. no substantial changes in DI risks
- Only estimate model for firms with > 10 workers

Estimation of anticipated effects

For some part of the distribution of disability risks, the marginal ER incentive is zero for <u>small</u> employers (paying their maximum premium) and one for <u>medium/large</u> employers (not paying maximum):

$$\underline{p}_{max} - \underline{p}_{min} < d_{jt} < p_{max} - p_{min}$$

Model

Use cross sectional inflow data (2000-2002) to estimate a log odds model for DI inflow *f*

 $\ln \{fit / 1 - f_{it}\} = X_{it} \beta + \Phi(d_{it}) + \eta I(p_{max} - p_{min} < d_{it} < p_{max} - p_{min}) + \varepsilon_{it}$

i = firm, *t* = time, *X* = controls, Φ is spline of disability risk *d*, *I* denotes event in parentheses, ε is residual

Estimation results

- Significant and (expected) negative effect only in 2002: –0.20 (0.031)
- Effects 0.096 and -0.081 in 2000 resp. 2001
- Interpretation: Awareness of ER has increased over time? Unanticipated effects?
- Other results: see PPHS paper.

Unanticipated effects: research design

- Idea: employers improve preventative activities if they are confronted with (unanticipated) premium increases
- Allows for a <u>difference in difference</u> design:
 - Compare *changes* in the DI inflow rate of firms experiencing it first premium raise..
 - ..to changes of those who haven't (yet)
- Due to two year registration lag, no risk of regression to the mean effects (Koning 2009)

Unanticipated Effects: outcomes

- Similar log odds model, but now with controls for ex ante differentials in treatment and control groups (as dummies)
- Treatment group: firms that have an increase in DI premium rate in 2001; controls have not.
- Dif-in-dif estimate for effect in 2002
- Effect estimate of 0.16 (0.021)

- Similar for partial and full disability

• See Koning (2009) for details

Conclusions

- Effect of DI experience rating seems to have worked like a "wake-up call"
 - No evidence of ER incentive effects in 2000 and 2001
 - Strong evidence of effects from a learning perspective.
 - Relevant cognitive biases: availability bias, optimism bias and accumulation bias
- Care should be taken of ER design, particularly registration delays
- In Dutch context, also other (new) risks:
 - More inflow in unemployment insurance
 - Employers more eager to use temporary contracts, without ER (adverse selection)